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Characterization of processes we are interested in

Coleman (1981):

1 there is a collection of units, each moving among a finite number
of states;

2 changes (events) may occur at any point in time;
3 there are factors, possibly time-dependent, influencing the events.

We should add

1 effects of covariates may change in time;
2 measurements are often (almost always) censored.
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Examples

Source: Blossfeld, Golsch, Rohwer (2007)

medical studies duration of life after diagnosis;
labour market studies workers move between unemployment and

employment, full-time and part-time jobs, or among
various kind of jobs;

demographic studies durations of marriages or consensual unions;
studies of organizational ecology durations of existence of firms,

unions, organizations;
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Other names for Event History/Survival Analysis are

Failure Time Data Analysis
Reliability Analysis
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When would one use the methods of EHA?

When the outcome of interest is time to some event.

This answer is rather obvious, but why do we need special methods?
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The need for special methods comes from censoring. There may be
different reasons for censored data:

lost to follow up
event of a different type (like death for other reasons)
end of study (most common)
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With censored data we can’t even calculate a simple arithmetic mean
(in the usual way) or draw a histogram.

So, the situation seems pretty much hopeless.

Luckily, it is not, although it took some time to come up with methods
that deliver want we want.

What do we want?
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The Goals of EHA

1 Estimation of the distribution (survival) function.
2 Comparison of distribution (survival) functions.
3 Finding association between the outcome (survival time) and

prognostic variables.

Stare (SLO) Introduction to EHA 10 / 46



The Goals of EHA

1 Estimation of the distribution (survival) function.

2 Comparison of distribution (survival) functions.
3 Finding association between the outcome (survival time) and

prognostic variables.

Stare (SLO) Introduction to EHA 10 / 46



The Goals of EHA

1 Estimation of the distribution (survival) function.
2 Comparison of distribution (survival) functions.

3 Finding association between the outcome (survival time) and
prognostic variables.

Stare (SLO) Introduction to EHA 10 / 46



The Goals of EHA

1 Estimation of the distribution (survival) function.
2 Comparison of distribution (survival) functions.
3 Finding association between the outcome (survival time) and

prognostic variables.

Stare (SLO) Introduction to EHA 10 / 46



Survival function

Formally:

If T is a continuous non-negative random variable with density f (t),
then its survival function is

S(t) = P(T > t) = 1− F (t) =

∫ ∞
t

f (x)dx ,

It means:

The value of the survival function at any given time t is the proportion
of people still not experiencing the event (e.g. still alive, still
working) at that time.
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Estimating the survival function
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Estimating the survival function
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Estimating the survival function

More formally, we are using the formula for the probability of a product
of events.

If A and B are two events, then the probability of the product AB is

P(AB) = P(A)P(B|A)

where P(B|A) is the conditional probability of B given A.

Stare (SLO) Introduction to EHA 14 / 46



Estimating the survival function

More formally, we are using the formula for the probability of a product
of events.

If A and B are two events, then the probability of the product AB is

P(AB) = P(A)P(B|A)

where P(B|A) is the conditional probability of B given A.

Stare (SLO) Introduction to EHA 14 / 46



Estimating the survival function

H
HHHH

HHH
HHH

HHH
HHHH

��
��
��

��
�
��
�

�
��

�
��

1 2 3

S

S

F

S

F

F

1− π1

1− π2

1− π3

π1

π2

π3

Stare (SLO) Introduction to EHA 15 / 46



Estimating the survival function

H
HHHH

HHH
HHH

HHH
HHHH

��
��
��

��
�
��
�

�
��

�
��

1 2 3

S

S

F

S

F

F

S

F

F

0.7

0.8

0.9

0.3

0.2

0.1

Stare (SLO) Introduction to EHA 15 / 46



Estimating the survival function

H
HHHH

HHH
HHH

HHH
HHHH

��
��
��

��
�
��
�

�
��

�
��

1 2 3

S

S

F

S

F (P = 0,7× 0,2)

F0.7

0.8

0.9

0.3

0.2

0.1

Stare (SLO) Introduction to EHA 15 / 46



Estimating the survival function

H
HHHH

HHH
HHH

HHH
HHHH

��
��
��

��
�
��
�

�
��

�
��

1 2 3

S

S

F

S

F (P = 0,7× 0,2)

F (P = 0,7× 0,8× 0,1)0.7

0.8

0.9

0.3

0.2

0.1

Stare (SLO) Introduction to EHA 15 / 46



Estimating the survival function

H
HHHH

HHH
HHH

HHH
HHHH

��
��
��

��
�
��
�

�
��

�
��

1 2 3

S

S

F

S (P = 0,7× 0,8× 0,9)

F (P = 0,7× 0,2)

F (P = 0,7× 0,8× 0,1)0.7

0.8

0.9

0.3

0.2

0.1

Stare (SLO) Introduction to EHA 15 / 46



Estimating the survival function

We can use this principle in calculating survival even with censored
data.

We first divide the time scale into intervals in such a way that events or
censorings occur on the boarders of the intervals.

Then we calculate (conditional) probabilities of surviving each interval
and obtain probability of surviving any time by simply multiplying the
probabilities of survival up to the given point in time.

The method is named after Kaplan and Meier.
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The Kaplan-Meier method
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The Kaplan - Meier curve for our example

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

What do flat regions on the curve mean?

Stare (SLO) Introduction to EHA 18 / 46



The Kaplan - Meier curve for our example

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

What do flat regions on the curve mean?

Stare (SLO) Introduction to EHA 18 / 46



Another example

Data
Time At Risk
55 12

61+ 11
74 10
81 9

93+ 8
122+ 7
138 6
151 5
168 4

202+ 3
220+ 2
238 1

Calculation

Ŝ(55) =
11
12

= 0,917

Ŝ(61) =
11
12
· 11

11
= 0,917

Ŝ(74) =
11
12
· 9

10
= 0,825
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Life tables

Year N E L
1 110 5 5
2 100 7 7
3 86 7 7
4 72 3 8
5 61 0 7
6 54 2 10
7 42 3 6
8 33 0 5
9 28 0 4

10 24 1 8
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Life tables
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Plotting survival curves from life tables
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Illustration - survival after myocardial infarction
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Illustration - survival after myocardial infarction
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Comparison of survival curves
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The statistical test for the null hypothesis (that the two samples come
from the same population) is based on the usual idea:

Under the null hypothesis we expect that people will be dying
proportionally to the group size.

Based on this we calculate the expected number of deaths in each
group and compare it to the observed number of deaths.

The name of the test is log rank test for some strange reasons.

The p-value for the log rank test for the previous example is 3,1 · 10−9.
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Log rank test

Say p < 0,01. What does that mean?
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How to prepare data

Start date End date Status (failure, no failure)

or

Survival time Status (failure, no failure)
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Regression models

Linear regression model says

Y ∼ N (α +
∑

βiXi , σ
2)

This relates the values of Y to the values of Xi . We can not do this in
survival because of censoring.

The problem can be solved by using the hazard function.
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The hazard function

h(t) = lim
∆t→0+

P(t ≤ T < t + ∆t |T ≥ t)
∆t

S(t) = e−
∫ t

0 h(u)du
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Parametric regression models

We assume some parametric model for the hazard.

Since in sociological research it seems to be difficult to assume a
certain parametric model for the data at hand, we will only look at the
exponential model.

Then we will turn to the (semiparametric) Cox model.
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The Cox model

h(t , x) = h0(t)eβx

h1(t , x1)

h2(t , x2)
= eβ(x1−x2)

h(t , x + 1)

h(t , x)
= eβ

Cox model is often called the proportional hazards model.

Important: the baseline hazard stays unspecified! This is why we
sometimes say that the model is semiparametric.
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A typical description of the methods of survival
analysis

Survival curves were constructed with the Kaplan-Meier method and
compared with the log-rank test. Analyses requiring adjustments for
potential confounding factors were conducted using the Cox
proportional hazards method. The proportional hazards assumption
was tested and satisfied for each mathematical model using Cox
analysis.
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Example: Cox model fit to MI data

coef exp(coef) se(coef) z p
age 0.056 1.057 0.004 12.554 0.000
sex 0.004 1.004 0.102 0.036 0.970
year -0.081 0.922 0.035 -2.295 0.022
diabetes 0.488 1.630 0.102 4.781 0.000
aspirin -0.335 0.716 0.094 -3.568 0.000
reinfarct 0.503 1.653 0.125 4.025 0.000

Likelihood ratio test = 289 on 6 df, p = 0 n = 1017 (23 observations
deleted due to missing)
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Example: using the Cox model to compare survival
curves
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Example: using the Cox model to compare survival
curves

We take stage IV to be the reference category.

Stage Stage I Stage II Stage III
I 1 0 0
II 0 1 0

III 0 0 1
IV 0 0 0

coef exp(coef) se(coef) z p
Stage III -0.316 0.729 0.202 -1.57 0.120
Stage II -0.779 0.459 0.199 -3.92 < 0.001
Stage I -1.203 0.300 0.213 -5.64 < 0.001
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Example: checking the fit
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Example: checking the fit
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Time dependent covariates and effects

In its most general form the Cox model can be written as

h(t , x(t)) = h0(t)eβ(t)x(t)

The model easily incorporates time dependent covariates, time
dependent effects are more difficult (as they would be in any model).
We’ll have a look at an easy method to estimate such effects.
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Frailties

Basically, we talk about frailties when the true model is, say

h(t , x) = h0(t)eβ1x1+β2x2

but we only measure X1 and omit X2 in the model. Even if X1 and X2
are independent, the result changes, sometimes by a lot (unlike in
linear regression).

We can have individual frailties, or frailties pertaining to a group, in
which case we talk of shared frailties.
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Repeated events

We’ll look at three approaches:

1 assuming independence
2 shared frailties
3 stratified model
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Competing risks

An individual can experience different kinds of events, but only one of
them (experiencing one prevents him/her to experience another).
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Multi state models

Here we also have states that are transitional, i.e. states from which an
individual can exit.
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Our published research in Survival Analysis

1 Explained variation in survival analysis
2 Linear model of Buckley and James
3 Frailties
4 Goodness of fit of survival models
5 Relative survival
6 Multi state models

In this course: 3, 6
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How will the course look like

Approximately half lectures, half labs.
Home work.

Course material:

Slides (101 page)
Introduction to R text
Exercises
Solutions to exercises (given AFTER the course)
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