Specification of the course for the Book of courses					
Study program			Applied statistics		
Title of the course			Introduction to probability theory		
Teachers (for lectures)			Miljana Jovanović		
Teacher/fellow teacher (for exercises)			Jasmina Đorđević		
ESPB		8	Status of the course (obligatory (0) /elective (E))		0
Conditions	none				
Aim of the course	The aim of this course is to give an introduction of the theory of probability and random variables necessary for understanding the statistical analysis. This course is a prerequisite for all other courses in the study program.				
Course outcomes	After passing this exam, students will master the concept of probability and random variables. They will understand the characteristics of one-dimensional and multidimensional random variables. Students will understand and will be able to apply the central limit theorem, and will understand the basic principles of statistical analysis based on the theory of large numbers.				
Content of the course					
Theoretical classes	Statistical experiment, probability space. Axioms of probability. The classical definition of probability. Geometric probability. Statistical definition of probability. Properties of probability. Independent events and conditional probability. The formula of total probability and Bayes formula. Random variables. Distribution functions. Discrete random variable. Continuous random variable. Random vectors. Independence of random variables. Functions of random variables and random vectors. Numerical characteristics of random variables. Mathematical expectation. Moments. Covariance and correlation coefficient. Covariance matrix. Information and entropy. Characteristic functions. Limit theorem. Types of convergence in probability theory. Čebyšev type inequalities. Laws of large numbers. Central limit theorem and its applications. Empirical distribution function and the central theorem of statistics. Conditional distribution. The definition of conditional distributions with respect to random variable. Conditional mathematical expectation and variance.				
Practical classes	Content of practical classes follows theoretical classes through solving the problems in investigating areas.				
References					
1	Ivković Z., "Teorija verovatnoća sa matematičkom statistikom", Naučna knjiga, 1989.				
2	Spanos, Aris: Probability Theory and Statistical Inference, Cambridge: University Press, 1999				
3	Danijela Rajter-Ćirić: Probability, Novi Sad: Faculty of Science, Department of Mathematics and Informatics, 2009.				
4	Spiegel, Murray R.: Theory and Problems of Probability and Statistics, New York: McGraw-Hill, 2000				
The number of contact hours per week during the semester / trimester / year					
Lectures	Exercises	DON	Resea		Other classes
2	2	-		------	------
Teaching methods	Lectures, exercises, individual work				
Evaluation of knowledge (maximum score 100)					
Pre exam duties			points	Final exam	points
Activity during lectures			10	oral exam	40
colloquia			50		

