Teaching R
Business Statistics and Statistical Computing
Kurt Hornik
- R Core Developer, ISI Highly Cited Researcher

Ronald Hochreiter
- Business Informatics
- Teaching: Statistics and Finance (Bachelor), Finance (Master)

Christoph Waldhauser
- Political Science
- Teaching: Statistics (Bachelor, Post Graduate (Social Science))
International Business Administration program

- Overall rank: 24th out of 65 programs.
- 4th in the German-speaking world.

CEMS Master in International Management program

- Overall rank: 2nd out of 65 programs.

European Business School Ranking 2009

- 34th place out of 70.
Students (Spring 2010)

- Total students 26,065 (49% women).
- International students 6,272 (24% of total).
- Incoming exchange students: approx. 1000 per year.
- Outgoing exchange students: approx. 900 per year.

Faculty and Staff (2009 in full-time equivalents)

- Total faculty 620 (39% women).
- Administrative staff 413 (70% women).
Resources

- Budget (2009) EUR 110 million, Premises 137,000 m^2
- Library stock 819,000 books
- 221 Partner universities, 10 International Summer Universities
- 130 Courses in English per semester

Certifications

- PIM member since 1989
- CEMS member since 1990
- EQUIS 2007, renewed 2010
Business Statistics

Contents at WU (undergraduate level)

- Descriptive Statistics
- Hypothesis Testing (including Permutation Test)
- Regression, ANOVA (uni- and multi-variate)
- Model Selection
- Time Series Analysis, Stochastic Processes

Problems

- Only one lecture, 2 hours, just 4 ECTS points!
- Prepare students for finance, economics, marketing, . . .
R Examination Package

A quick glance at the package

- Package exams on CRAN (free, open-source).
- Automatic exam generation.
- Integrated facilities for correction.
- Minimization of time from design of exam to execution, correction, and publishing results.

Implementation at WU

- Individual exams for each and every student.
- Results are published online (web interface) within 4-24 hours after the exam.
Main rule
Do not invent real world examples if you do not have a clue about the area and do not mix (and mess) application areas.

Example from current WU lecture
Hypothesis test, proportion test (second lecture) examples created by a mathematician: cheque reader and credit card.

Problem
Overestimation of familiarity with real world applications.
Why Statistical Computing?

Tim Burners-Lee

“Journalists need to be data-savvy”

New world statistics

- data-driven
- computationally expensive
- visualization and immersion
- (online) data harvesting
Why R?

Advantages of R

- Free Software
- State of the art
- low cost
- no license hassle
- rather low level
- very transparent
- excellent community for support
Lasswell’s formula

Who teaches what in which channel to whom with what effect?
General Considerations

Lasswell’s formula

Who teaches *what* in *which channel* to *whom* with *what effect*?
General Considerations

Lasswell’s formula

Who teaches what in which channel to whom with what effect?

Who? Qualified faculty

- Industry experience with R
- Experience in teaching software
- Qualification programmes
Lasswell’s formula

Who teaches what in which channel to whom with what effect?

What? Syllabus

- Computer driven statistical analysis
- Statistical programming
- Data visualization
Lasswell’s formula

Who teaches what in **which channel** to whom with what effect?

Which channel? Infrastructure

- FLOSS comes at no cost
- Hardware needs to be provided
- Computer labs at WU available 24/7 to students
General Considerations

Lasswell’s formula

Who teaches what in which channel to **whom** with what effect?

Whom? Audience

Master program attracts different backgrounds. Differences in

- computer literacy
- statistical literacy
- analytical experience
General Considerations

Lasswell’s formula
Who teaches what in which channel to whom with **what effect?**

What effect? Teaching outcomes

- Statistical Analysis
- Statistical Programming
- Deployment of stat methods
- Autonomous extension of knowledge (i.e. learn how to use new R packages)
Smoothening Out Differences

Starting point

heterogenous group of students

On the way

- online & self-study materials
- small group tutorials
- peer tutoring

End point

homogeneous performances of entire group
Smoothening Out Differences

Starting point
heterogenous group of students

End point
homogeneous performances of entire group
Smoothening Out Differences

Starting point
heterogenous group of students

On the way
- online & self-study materials
- small group tutorials
- peer tutoring

End point
homogeneous performances of entire group
Partial Immersion

Learning statistics is like learning a language

Language learning

- steep learning curve
- mixes theory & application
- exposure maximizes results
Partial Immersion

Learning statistics is like learning a language

<table>
<thead>
<tr>
<th>Language learning</th>
<th>Statistics learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>steep learning curve</td>
<td>mediated with GUIs</td>
</tr>
<tr>
<td>mixes theory & application</td>
<td>interactive usage of R</td>
</tr>
<tr>
<td>exposure maximizes results</td>
<td>early start with R exposure</td>
</tr>
</tbody>
</table>
Partial Immersion

Learning statistics is like learning a language

<table>
<thead>
<tr>
<th>Language learning</th>
<th>Statistics learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>steep learning curve</td>
<td>mediated with GUls</td>
</tr>
<tr>
<td>mixes theory & application</td>
<td>interactive usage of R</td>
</tr>
<tr>
<td>exposure maximizes results</td>
<td>early start with R exposure</td>
</tr>
</tbody>
</table>

Solution: Partial immersion

is a technique in which students are early on and repeatedly exposed to a new language. Content is provided in both the old and the new language.
Quality Control

Quality indicators
- drop-out rate
- PhD scholarships awarded
- ...

Student feedback
- qualitative focus group discussions
- quantitative survey